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A procedure of modeling of the stressed-strained state of large-size space structures is considered.
Using the mirror of the concentrator of a solar power plant as an example, results of the modeling
are shown.

Stringent requirements on the stability of shape in the process of operation are imposed on modern
high-precision large-size space structures (antennas, concentrators, reflectors, etc.). Since the experimental de-
velopment of such products under terrestrial conditions necessitates the creation of sophisticated and expen-
sive equipment, it becomes more pressing to develop procedures of theoretical investigation of the stressed
and strained state that enable one to take into account the distinctive features of the physical properties of the
structural materials used.

In [1], the regimes of temperature loading which are characteristic of large-size space structures of
composite materials that are in near-earth orbits have been analyzed and the critical moments of attainment
of the maximum and minimum temperature levels have been determined; also, the temperature state of the
structure for the selected calculated cases has been determined. This work seeks to investigate the strained
state of a composite structure with a prescribed temperature field.

Problems of straining of isotropic thin-walled structures under the action of a change in the tempera-
ture gradients have been addressed for a long time already [2–5], and the corresponding range of problems
has been studied in sufficient detail. However, the problem of calculation is substantially complicated for
composite anisotropic materials in view of the distinctive features of their structure [6].

In particular, one characteristic feature of carbon-filled plastics is a pronounced dependence of the
mechanical properties on the temperature [7]. The influence of the temperature dependence of the temperature
coefficient of linear expansion on the strained state of a carbon-filled-plastic structure has been considered in
[8] with the example of the simplest problem. It was shown that in three-layer structures with load-carrying
layers of carbon-filled plastic for the same value of the temperature difference between the casings not only
can the change in the curvature take on different values but it can change its sign as well. Therefore, evalu-
ation of the strained state without taking into account the behavior of the material can lead to erroneous
results.

In this work, we propose a procedure for determination of the stressed-strained state of mildly sloping
composite shell-type structures with a prescribed temperature field; this procedure is based on the finite-ele-
ment method and makes it possible to take into account the dependence of the elastic characteristics and the
temperature coefficient of linear expansion of materials on the temperature.

Strain Relations. The material of the shells will be considered to be incompressible in the transverse
direction. When the elasticity modulus is Ez → ∞ the strain of transverse compression ε3(z) can be taken to be
equal to zero. Then the normal displacement of a shell ω remains constant along the coordinate z, i.e.,
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v3 (z, x1, x2) = w (x1, x2) . (1)

We take the middle surface of a shell as the coordinate surface. The coordinate surface (z = 0) of a
mildly sloping shell is prescribed in the form x3 = x3(x1, x2). Here x1 and x2 are considered to be the coordi-
nates of a point on the projection plane of the mildly sloping shell, while x3 is considered to be the coordi-
nate along the third axis of a Cartesian coordinate system.

The assumption of the incompressibility of the shell in the transverse direction can be considered as
the first kinematic hypothesis of the theory.

As the second kinematic hypothesis we adopt the assumption of a linear distribution of the tangential
displacements v1 and v2 over the shell thickness, i.e.,

 v1 (z, x1, x2) = u1 (x1, x2) + zθ1 (x1, x2) . (2)

Based on the classical definitions of the linear components of the strain tensor and on the assump-
tions of the mildly sloping nature of the shell, we derive the strain relations

ε = Lu , (3)

or in expanded form
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Here ∇ 1 = ∂ ⁄ ∂x1(1, 2) and x3,ij = ∂2x3
 ⁄ (∂xi∂xj) (i, j = 1, 2). The indices after the comma mean differentiation

with respect to the corresponding coordinate. For the case where the directions of the ox1 and ox2 axes coin-
cide with the directions of the lines of principal curvatures, x3,12 = 0.

Thermoelasticity Relations. Thermoelasticity relations are considered under the assumption that the
material of the structure is orthotropic and incompressible in the transverse direction. In this case the number
of independent coefficients of elasticity is equal to six. With account for the thermal strains these relations
can conveniently be written in the coordinate system of an individual layer (the index of the layer is omitted):

σ′ = Cε
′ ε′ − σT

′  ;   τ′ = Cγ
′  γ′ , (5)

where σ′ = [σ1
′ , σ2

′, σ12
′]T, τ′ = [σ31

′ , σ32
′ ]T, ε′ = [ε1

′ , ε2
′ , ε12

′ ]T, and γ′ = [ε31
′ , ε32

′ ]T are the column vectors of
stresses and strains determined in the coordinate system of the layer; σT = [σ1T

′ , σ2T
′ , 0]T are the temperature

components of the stresses;
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c11
′  = 

E1

1 − ν12ν21
   (1, 2) ;   c12

′  = c11
′ ν21 ;   c33

′  = G12 ;   σ1T
′  = E1 (α1

0 + ν21α2
0) ∆T ⁄ (1 − ν12ν21)   (1, 2) .

Relations (5) in the coordinate system tied to the shell (x1, x2, x3) will have the form

σ = Cεε − σT ;   τ = Cγ γ , (5∗ )

where Cε = βεTCε
′ βε and Cγ = βγTCγ

′ βγ; βε and βγ are the transformation matrices of the components of the
column vector of strains in passage from the coordinate system of the layer to the coordinate system of the
shell [6].

Since consideration is given to the thermal loading of the structure, of greatest interest are the tem-
perature components of stresses which for an orthotropic layered material will be calculated as follows [6]:

σ1T = (cos2 ϕ (c11
′ α1

0 + c12
′ α2

0) + sin2 ϕ (c12
′ α1

0 + c22
′ α2

0)) ;

σ2T = (sin2 ϕ (c11
′ α1

0 + c12
′ α2

0) + cos2 ϕ (c12
′ α1

0 + c22
′ α2

0)) ;

σ12T = T sin ϕ cos ϕ (c11
′ α1

0 + c12
′ α2

0 − c12
′ α1

0 − c22
′ α2

0) ,

(6)

where c11
′  = 

E1

1 − ν12ν21
, c22

′  = 
E2

1 − ν21ν12
, and c12

′  = c11
′ ν21 are the coefficients of elasticity of the material in

the coordinate system of the layer (Fig. 1).
Internal Force Factors. In order to determine the strained state of a structure subject to thermal

loading we determine the values of the temperature forces and moments occurring in a multiple sandwich.
For a multiple sandwich formed by cross packing of the layers the components of the temperature

forces and moments are determined by integration of the corresponding components of thermal stresses over
the sandwich thickness:

N1T = ∫ 
HΣ

σ1T (1 + k1z) dz   (1, 2) ;   M1T = ∫ 
HΣ

σ1T z (1 + k1z) dz   (1, 2) ,   HΣ = H0 + 2h0 . (7)

Since we consider the symmetric scheme of packing and the temperature difference over the sand-
wich thickness is insignificant, as follows from the results of [1], the stresses σ12T for the sandwich can be
taken to be equal to zero. As a consequence, the corresponding components of the temperature forces and
moments are N12T = M12T = 0.

Considering the thermal conductivities of the ith layer λ[i] to be constant within the layer, we can
perform the integration (7). In calculating the integrals, we will assume that within the ith layer

Fig. 1. Stresses in the element of a monolayer.
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1 + k1z � 1 + k1t[i]   (1, 2) ;   σ1T
[i]  = d1T

[i] T[i]   (1, 2) ;

d1T
[i]  = cos2 ϕ[i] (c11

[i] α1
0[i] + c12

[i] α2
0[i]) + sin2 ϕ[i] (c12

[i] α1
0[i] + c22

[i] α2
0[i])   (1, 2) .

As a result of integration we obtain the values of the temperature forces and moments for a multiple sand-
wich (Fig. 2):

N1T =  ∑ 

i=1

n

 d1T
[i]  (1 + k2t[i]) TN

[i]   (1, 2) ;   M1T =  ∑ 

i=1

n

 d1T
[i] (1 + k2t[i]) TM

[i]   (1, 2) , (8)

where

TN
[i] = T(i−1)t1

[i] − q (t2
[i] − z(i−1)t1

[i]) ⁄ λ[i] ;   TM
[i] = T(i−1)t2

[i] − q (t3
[i] − z(i−1)t2

[i]) ⁄ λ[i] ;

t[i] = 
z(i−1) + z(i)

2
 ;   t1

[i] = h[i] ;   t2
[i] = 

z(i)
2  − z(i−1)

2

2
 ;   t3

[i] = 
z(i)

3  − z(i−1)
3

3
 ;   q = 

Td − Tu

∑ 
n

 
h[i]

λ[i]

 .

Thus, formulas (7) and (8) determine the components of the temperature forces and moments occur-
ring in the multilayer shell-type structure. Knowing the distributions of the temperatures Tu and Td over the
upper and lower sandwich surfaces from the thermal calculations, we can determine the internal force factors
and next, using the physical relations of the theory of mildly sloping shells [6] and the equations of connec-
tion of strains with displacements, determine the strained state of the structure in question.

Finite-Element Model. To pass from the analytical dependences to a numerical solution one uses the
procedures of the finite-element method. In [9], the authors proposed a new nine-nodal tetragonal finite ele-
ment which uses the strain relations of a mildly sloping shell of a general form. Such a finite element makes
it possible to carry out convenient subdivision of a shell-type structure, possesses good convergence, and en-
ables us to take into account the characteristic features of composite materials in calculations, i.e., the nonuni-
formity of the structure in thickness, low rigidity in lateral shear, and the dependence of the elasticity moduli
and of the temperature coefficient of linear expansion on the temperature. It should be noted that the strain
relations based on which the element was constructed have been derived for the general case of a mildly
sloping shell where the coordinate axes ox1 and ox2 do not coincide with the lines of principal curvatures.
This provides the possibility of applying this element to calculation of a wider class of shell-type structures.

To approximate stiffeners one can use a three-nodal one-dimensional finite element [10].
Example. In this work, the problem formulated is solved with the example of the structure of the

lobe of a parabolic reflector of a promising solar gas-turbine power plant; this plant is intended for use as the
primary energy source in onboard systems of manned spacecraft [11].

It has been assumed that structurally, the reflector lobe is a mildly sloping stiffened multilayer shell
which consists of two carbon-filled-plastic casings of thickness h0 and a filler, i.e., aluminum honeycombs of
height H0. Each casing consists of four unidirectional layers of carbon-filled plastic packed according to the
scheme [0o/90o/90o/0o]. The monolayer thickness was taken to be hm =  0.01H0.

In approximation of the shell surface, 320 two-dimensional finite elements were used. To approximate the
stiffening beam and two longitudinal edgings we used 120 linear finite elements (40 per object). The transverse
edging was approximated by eight finite elements. It was assumed that the reflector lobe was rapidly fixed to a
narrow (internal) transverse edge; the remaining edges were considered to be free.
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As has been noted earlier, a characteristic feature of carbon-filled plastics is a pronounced depend-
ence of the mechanical properties on the temperature. Figure 3 gives plots of the change of the temperature
coefficient of linear expansion of a carbon-filled plastic, used in the structure, in the temperature range 173–
473 K. It is seen from the plots that the quantity α1

0 undergoes the largest relative changes in the above
temperature range; the sign of the temperature coefficient of linear expansion changes to a negative one (i.e.,
the monolayer is contracted in heating).

It has been shown in [6] that for shell-type structures the temperature dependence of the properties
leads to the appearance of nonzero mixed (membrane-flexural) rigidity characteristics, which is a nonremov-
able feature in this case. In this connection, design calculations are substantially increasing in importance.

In the calculations carried out, the dependence of the elasticity moduli E1(T), E2(T), and G12(T) was
taken into account at the stage of determination of the membrane, flexural, and mixed rigidity characteristics

of the structure. The influence of the dependences of the temperature coefficient of linear expansion α1
0(T)

and α2
0(T) was taken into account at the stage of determination of the temperature forces and moments, i.e.,

in calculation of the combination d1T
[i]  (1, 2), we substitute into it the values of the temperature coefficient of

linear expansion of the ith layer α1
0[i](T[i]) (1, 2) which are determined for the temperature of the ith layer

T[i].
It was assumed that the structure of the reflector lobe is subject to only thermal loading; considera-

tion was given to two basic calculated cases determined in [1]. The first of them corresponded to the moment
of termination of the shadow portion of the orbit and hence the minimum levels of temperature in the mem-
bers of the structure. The second case corresponded to the moment of termination of the illuminated portion
of the orbit and to the maximum temperature levels. The values of the temperatures were prescribed for the
upper and lower surfaces of the shell, the stiffening beam, and the edgings for three cross sections that cor-
responded to the longitudinal coordinate x = 0, x = L ⁄ 2, and x = L (L is the length of the reflector lobe). The
temperatures in the intermediate cross sections were determined by interpolation from the prescribed three
cross sections.

In analyzing the results of calculations of the strained state, the emphasis was on the values of the
normal displacements of the shell surface since it is precisely they that exert a determining influence on the
effectiveness of the structure. The calculations were carried out on a personal computer with a 100-MHz Pen-

Fig. 2. Structure of a multiple sandwich.

Fig. 3. Model temperature dependences of α1
0 and α2

0 (1/K).
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tium I processor and an on-line storage of 32 Mb and took about 4 min. The calculation results are presented
in Fig. 4 in the form of the diagrams of distribution of the normal displacements.

It is seen from the given results that the normal displacements attain the highest value in the first
calculated case, i.e., for the minimum temperature level. This is explained by a significant relative decrease
in the value of the temperature coefficient of linear expansion α1

0 in heating and by its "nontraditional" nega-
tive value in the temperature range in question [7]. It should be noted that in both calculated cases, normal
displacements of one sign (positive ones) occur.

As possible methods for decreasing the values of the normal displacements of the surface of a reflector
and other shell-type structures operating under similar conditions we can recommend the following variants:

(a) shifting the range of workloads to the region of high temperatures by deposition of a coating with
the corresponding characteristics of reflection and absorption;

(b) when the strain of the reflector was considered it was assumed that an ideal reflecting surface is
realized at a temperature of 273 K relative to which the increments in the temperature are calculated for
computation of strains. To decrease the values of the deviation from an ideal reflecting surface we can rec-
ommend that the reflector lobe be manufactured in such a way that this surface (or a surface close to it)
would be realized in the region of decreased temperatures. However the above method requires that the tech-
nological aspects of the problem be studied in detail;

(c) a safe method for attaining the minimum deviations from an ideal reflecting surface is thermo-
static control of the structure, which, however, will involve an increase in its mass.

CONCLUSIONS

1. The procedure of calculation of the stressed-strained state of multilayer stiffened mildly sloping
shells with a prescribed temperature field has been developed and realized with account taken of the depend-
ence of the elastic characteristics and the temperature coefficient of linear expansion on the temperature.

2. Within the framework of this procedure, a new tetragonal multilayer finite element of a mildly
sloping shell of general form has been developed based on a mixed variational formulation.

3. With the use of the proposed procedure, the important problem of investigation of the geometric
stability of the large-size structure of a parabolic mirror, i.e., the concentrator of a solar gas-turbine power
plant, has been solved practically.

4. A package of applied programs has been developed for solution of this class of problems.

NOTATION

Ez, elasticity modulus in the transverse direction; x1, x2, x3, Cartesian coordinate system tied to the
shell; v1, v2, and v3, displacements of a point on the shell surface along the coordinate lines; ui (i = 1, 2),

Fig. 4. Normal displacements of the shell surface for calculated cases 1
(a) and 2 (b). ω, mm; x and y, m.

1394



tangential displacement of a point of the coordinate surface along the oxi axis in the process of straining; θi

(i = 1, 2), angle of rotation of the cross section in the plane zoxi; ε1, ε2, and γ12, membrane strains of the
coordinate surface; κ1, κ2, and χ12, changes in the curvatures; γ13 and γ23, lateral-shear strains; ε, vector of
generalized strains; u, vector of generalized displacements; L, differential operator; x1

′ , x2
′ , x3

′ , coordinate sys-
tem of the layer; E1, E2, G12, G13, and G23, moduli of tension-compression and shearing of the layer in the
coordinate system tied to the orthotropism axes; ν12 and ν21, coefficients of transverse strains (Poisson coef-
ficients); α1

0 and α2
0, temperature coefficients of linear expansion; ∆T, temperature change; σσ′ and ττ′, column

vectors of stresses determined in the coordinate system of the layer; ε′ and γ′, column vectors of strains de-
termined in the coordinate system of the layer; σσT

′ , vector of temperature stresses in the coordinate system of
the layer; σσ and ττ, column vectors of stresses determined in the coordinate system of the shell; ε and γ,
column vectors of strains determined in the coordinate system of the shell; σT, vector of thermal stresses in
the coordinate system of the shell; cij

′  (i, j = 1, 2), coefficients of elasticity determined in the coordinate
system of the layer; Cε

′  and Cγ
′ , matrices of the coefficients of elasticity determined in the coordinate system

of the layer; βε and βγ, transformation matrices of the components of the column vector of strains in passage
from the coordinate system of the layer to the coordinate system of the shell; λ[i], thermal conductivity of the
ith layer; ϕ, angle of reinforcement; T, temperature; HΣ, thickness of the multiple sandwich; H0, thickness of
the honeycomb filler; h0, thickness of the casing; ki (i = 1, 2), curvature of the sandwich; σ1T

[i]  (1, 2), thermal
stresses in the ith layer; the notation (1, 2) after formulas means that the numerical indices change from 1 to
2 in the properties of cyclic permutation; ckl

[i] (k, l = 1, 2), coeffficients of elasticity of the ith layer; α1
0[i] and

α2
0[i], coefficients of linear temperature expansions of the ith layer; ϕ[i], angle of reinforcement of the ith

layer; T(i−1), temperature of the interior surface of the ith layer; Td and Tu, temperature of the lower and upper
surface of the multiple sandwich; z(i−1) and z(i), coordinates of the interior and exterior surface of the ith layer
relative to the coordinate plane of the sandwich; h[i], thickness of the ith layer; n, number of layers; N1T and
N2T, temperature forces in the multiple sandwich per unit length; M1T and M2T, temperature moments in the
multiple sandwich per unit length.
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